Empirical Modelling of Multi-agent Concurrent Systems with LSD-engine

(Extended Abstract)

Valery Adzhiev (1) and Meurig Beynon (2)

(1) Laboratory of Shape Modelling, University of Aizu, Aizu-Wakamatsu 965-80, Japan

valery@u-aizu.ac.jp

(2) Department of Computer Science, University of Warwick,Coventry CV4 7AL, UK

wmb@dcs.warwick.ac.uk

Abstract. In this paper, we present LSD-engine - a computational framework that allows the user (modeller) to apply Empirical Modelling (EM) methods to the design of behaviours for multi-agent systems with inherent concurrency. An overview of EM principles is given, and its key notions (observation, experiment, dependency, agency) in EM specific interpretation within the context of "commonsense concurrency" are briefly discussed. The paper focuses on LSD that is a language for describing multi-agent systems at high levels of abstraction. LSD model is built of agents that act in parallel, interact with each other and with the modeller. We describe an underlying coordination model based on a generative communication scheme relying upon a message queue as a common communication channel and a multi-level priority mechanism as a means for forming and handling computational threads. Main features of interactive environment implementing the introduced principles are presented. A classical concurrency problem "Readers and Writers" is used as a case-study.

Key Words: Modelling, Simulation, Empiricism, Parallelism, Concurrency, Agent, Multi-agent Systems, Actor, Interaction, Coordination, Message Passing.

1 Empirical Modelling

Empirical Modelling (EM) [1,2] offers both a broad foundational perspective on computing and a novel practical approach to modelling. Central to the EM perspective is an emphasis on the power of the computer to represent state - in particular, state which is easily interpretable, preferably in “real-world” terms. The choice of the epithet "empirical" reflects the fact that EM methods are rooted in observation and experiment, and accordingly approach system development from a very different perspective from that associated with formal methods and traditional mathematical models. As when constructing a spreadsheet model, the primary emphasis is upon identifying the dependencies between real-world observables, and on obtaining a representation of state that is sufficiently faithful to be useful in "what if" experiments. Empirical Modelling is particularly useful in the early stages of design and model development, where the behaviour of systems is yet to be completely circumscribed; it is the feature that distinguishes the approach from traditional techniques of computer-based modelling.

The typical activity in EM is therefore the use of the computer for building artefacts (computer models) that are directly related with real-world referent. These artefacts are distinguished by:

· supporting the initial, provisional and subjective conception of a referent;

· including empirical elements explicitly in the model;

· including multiple viewpoints and incomplete, inconsistent knowledge;

· remaining open-ended throughout the exploratory phase;

· being part of a principled framework supporting the whole modelling process from analysis to automation.

In this paper, we discuss LSD-engine - a computational framework that allows us to apply Empirical Modelling methods to the design of behaviours for multi-agent concurrent systems. Specifically, we concentrate on LSD that is a language for describing systems with inherent concurrency at high levels of abstraction.

Commonsense Concurrency

The study of concurrent systems is concerned with finding ways to specify the patters of interaction between processes, and to represent the intermediate system states. Specification languages such as CSS [3] and CSP [4] are intended for constructing precise and abstract mathematical models that represent the behaviour of concurrent systems of this nature. Specification notations that have been designed for use in commercial concurrent systems design, such as generalised Petri Nets, statecharts, SDL, Lotos, have to make some compromise between expressive power and intelligibility, and precise operational semantics.

EM is supposed to deal with the systems that are inherently concurrent, and where behaviour, concurrency, agency, dependency, action, state are notions that can be formulated with reference to the interaction between a person (or person-like intelligent agent) and the world. EM adopts both theoretical principles and practical techniques that reflect a more informal and human-centred perspective on concurrency than it is represented in orthodox specification traditions. The archetype that informs such the “human” perspective on concurrent systems is a collaborative behaviour that people experience through everyday life (“commonsense concurrency”) as they cooperatively work and interact with each other as well as with devices of diverse nature.

Whereas a mathematical abstraction such as CCS model has a public commonly agreed semantics and can be applied to make logically sound predictions about the behaviour of systems in a generic way, the concurrent system that we directly experience is subjective, located in the here and now, uncircumscribed and typically unpredictable. In commonsense concurrent systems, where unpredictability is the norm, an unambiguous operational semantics seems to be inappropriate, and it is the agent rather than process that is the primary concept. Agency as a commonplace concept in our informal interactions with the world is associated with attributing state-changes to what is construed as their primary source. As a whole, one can claim that the role of the external observer as the mind within which the concurrency of a system is apprehended, or in some sense as the creator of a concurrent system, is fundamental.

LSD language

In the Empirical Modelling context, both human participants and inanimate components are represented as agents. Observation-oriented modelling is used to describe the interaction between agents. It involves the systematic analysis and the metaphorical representation of the observables through which stimulus and response are mediated.
 The LSD (“Language for Specification and Description”) notation [5] was developed for this purpose. It allows the modeller to record what (s)he regards as the relevant features (observables) of the subject to be modelled and perceived. In the course of identifying these observables and from experience of the subject domain, the modeller also needs to identify the 'sources of change', the so-called state-changing agents of the system. The observables are then grouped around the agents to those they are related. They are classified according to the way in which they are related to an agent as follows:

· state variables: an agent owns them (in the sense that without the agent these observables could not exist); usually, they have distinct real-world flavour.

· oracle are variables that can be perceived by an agent that may be able to observe their values and to respond to them; they are owned by some other agents.

· handle are variables that an agent can manipulate; they resemble "experimental parametes" and are owned by some other agents.

· derivate reflect some dependencies holding between variables.

· protocol sections specify guarded sequences of actions an agent can perform in appropriate circumstances.

A short excerpt from LSD model of Vehicle Cruise Controller [6] is given below.

agent Vehicle {

state
mass, actSpeed,, accel,, brakF <…>

oracle brakePos

derivate

brakF = brakK * actSpeed * brakPos

accel = (traceF–brakF–windF)/mass

actSpeed = integral_time(accel, 0)

<…> }

agent Driver {

oracle
engineStts, cruiseStts, <…>

handle
brakePos, engineStts, cruiseStts, <…>

derivate brakePos = user_input(brakePos_Type)

protocol

(engineStts == esOff) -> engineStts = esOn

(cruiseStts != csOff) -> cruiseStts = csOff

<…>}

Thus, an LSD analysis is intended to capture the basic features of the initial conceptualisation of a subject by the modeller. It is therefore initially a provisional, subjective, personal analysis, and the specification should be "grown up" in the process of further development.

LSD notation has been used as a specification language in a suite of applications [e.g., 7-10]. In its initial form, LSD specification has no formal semantics and needs introducing additional assumptions for operational interpretation. Because of absence of a concrete underlying computational model, it supposes inherent ambiguities, in particular regarding concurrent agents’ actions and consequences of the modeller's intervening. It does not have a means for arbitrating conflicting situations that are unavoidable in the world with "commonsense concurrency". Recently, we have transformed LSD notation into an executable LSD language.

Computational model

The LSD-agent definition can be considered as a generic "static" entity; it should be parametrised to get an agent instance that is dynamic entity involved into modelling process. The structure of all instances of the same agent is the same as well as behaviour patterns but each instance has its own set of "state" variables.

"Oracles" and "handles" can be treated as a unified communication protocol serving as an interface for the connection with external (for the given agent) world - that is with other agents and with the modeller. LSD-agent can be characterised as "self-contained" with provisos: firstly, the agent can "perceive" someone else' variables and can directly change someone else' variables; secondly, the mechanism of indivisible propagation of variables changes through agents borders also introduces its specifics.

As modelling process is running, LSD-model makes transitions from one state to another. The computational mechanism can be outlined as generalised spreadsheet engine: there is actually network of variable definitions that responding to some variable change makes transition from one persistent state to another through a chain of indivisibly propagating changes of all dependent variables. Usually, a persistent state has a real-world significance that makes it possible to observe and comprehend it.

The agent's behaviour is determined by a script expressed in terms of actions being executed as re-evaluations of derivate/protocol variable definitions. Such variable can be either the agent's own "state" variable or someone else's "handle" variable. There is only one event that makes the agent to manifest its behaviour - receiving an incoming message-igniter. It carries the name of the variable that had undergone change. If this name matches the pattern that a response list of the derivate action (protocol section) contains, then this derivate action (sequence of actions within the protocol section) is eligible for executing (the former - unconditionally, the latter - provided its guarded condition is true). The agent can receive message-igniter either from outside or from "itself". As a result of the action execution, new value of the variable is evaluated, and the corresponding outgoing message-updater carrying this new value is generated and sent (the message is compound if the sequence of actions was executed).

Note that actual updating the variable is to happen later, when the message-updater reaches the agent that owns the variable. Normally, all variables keep their current ("old") value while the message-igniter goes through all agents. However, our intention is to provide as many modes of actions execution as possible. So, there is a possibility to use new ("future") values while evaluating guarded conditions or RHS of definition expression. The corresponding syntax convention: underscore symbol is added in the end of the variable's name ("varName_"); it means the most recent evaluated value is used while evaluating the expression.

Sometimes, one can know that there is no need to deal with "future" value that eventually results in generating message-igniter to propagate the variable change; it is just enough to make "instant action" that has no consequences except assigning new value to the variable at once. The corresponding syntax convention: ":=" should be used instead of "=" in the definitions.

Coordination model

Multi-agent system's behaviour is due to individual agents' behaviour that being semi-autonomous entities and acting in parallel, interact with each other and with the modeller. A sensible behaviour is possible if agents work coordinating their actions.

Coordination is a key concept while dealing with behaviour of complex systems with inherent concurrency. In general sense, the notion of coordination has been treated as management of dependencies between activities [11]. Unlike coordination languages that are supposed to be universal being able to extend a variety of host languages [12], LSD is self-contained. The specifics of its exploitation that emphasises exploration of the model under the modeller's energetic intervention dictates a necessity to have flexible but simple both coordination media and the coordination laws. As it is accepted in the field [13], computation concerns that are represented in the form of actions performed by individual LSD-agents are separated from control issues related to coordination of the actions.

The modeller is provided with explicit coordination means on the level of the linguistic description of the model that are supported with a underlying coordination model based on a mechanism of generative communication with using a common communication channel in the form of a message queue. Generative coordination is generally considered as "unfit for expressing the behaviour of parallel processes because traditionally it focuses on shared data only, and not on the processes manipulating them" [14]. We believe that the mechanism implemented in LSD-engine is of interest in this relation.

In the final paper, we argue why we do not exploit "actor"-style point-to-point asynchronous communication that is a generally acknowledged basic model for concurrent object-oriented languages [e.g., 15]. Here, let us note that the generative communication uncouples communication processes because it assumes that a "sender" of data does not directly contact a "receiver". In LSD notation, agents are supposed to be logically coupled by stimulus-response relations through their "oracles" and "handles". In LSD-engine, however, as LSD-agents are initially considered independently, communication between the agents is supposed to be anonymous to each other. As correspondence between abstract "oracles" and "handles", and concrete "state" variables of the agents has been set, the logical coupling actually appears. At the same time, introducing the common message queue "physically" implies uncoupled communication style that directly conforms to the design of parallel applications. So, there is no "pure" message passing paradigm [e.g., 16] where communication is usually a private act between participating agents.

Coordination means allow the modeller to handle the order in which the agents perform their activity. We have adapted the mechanism based on a multi-level system of priorities. An incoming message-igniter passes all agents' instances in the order determined by agent priority "Prio". As message-igniter comes in the agent instance, the order in which it reaches particular derivate actions and protocol sections depends on local priority localPrio attached to the action. There is a special discipline of "simultaneous activity" of a few instances with the same Prio or a few actions with the same localPrio. At last, global priority globalPrio is attached to each derivate action (protocol section) that serves as an instrument of ordering outgoing message-updaters while they are in the queue message. The current syntax convention: the term in the form "[localPrio|globalPrio|response list]" is attached to each derivate action or protocol section. For all priorities, there is default value "0.5" that can be omitted.

Traditionally, priorities are considered as low-level primitives. However in LSD-model, each action or sequence of actions to that priorities are attributed is quite coarse-grained expressing semantically significant activities (remember that each variable is an observable having real-world flavour, so its change can be given an interpretation). It means that we can order the actions in terms "earlier-later" ("before-after") being applied to meaningful events, and it has real sense in the referent's context. If some derivate actions (protocol sections) are activated by the same message-igniter and have the same globalPrio, it means they are eventually executed concurrently - irrespective, whether they are performed by the same agent or by different ones.

The means proposed allow the modeller to direct traffic of messages to form computational threads consisting of the ordered messages executed by the same agent or by different agents. There are three main modes for handling outgoing message-updaters (cf. e.g. with ABCL/1 language [17]):

· ordinary - the message (having global Prio between 0 and 1) is put to an "ordinary" frame of message queue corresponding to the current message-igniter;

· express - the message (having global Prio between 1 and 2) is put to an "express" frame that is one and only; it contains messages-updaters resulting from passing different messages-igniters; it can be interpreted as an instrument for building the computational thread beyond linear discipline of the modelling progress;

· instant - the message-updater is sent directly to the agent-owner of the variable to be updated at once (it is similar to "point-to-point" synchronous communication channel), and no subsequent generating the message-igniter is supposed. In the light of presence of instant actions, significance of the order in which message-igniters move becomes clear.

Let us outline main phases of the modelling cycle: it starts from extracting all messages with the same globalPrio - either from express frame or (provided express frame is empty) from top ordinary frame. Then these messages reach the agents that own the variables to be updated; after actual updating the variable, a special message-informer is broadcast all the interested agents to inform them about new value of the variable. Then, message-igniters are broadcast. There are subtle moments concerned with implementation of concurrency for derivate actions and for protocol-related sequences of actions. They are to be clarified in the final paper. As a whole, such the scheme provides quite flexible levers for designing rich patterns of behaviour on the fly.

Environment for Empirical Modelling
LSD-engine has been implemented as a practical tool for performing a complete cycle of EM. Currently, LSD-engine has been implemented as a multithreaded interactive system that can be run on PC under MS Windows. It consists of “Modelling subsystem” and “Interface subsystem” and has extendible set of data types including bool, int, float, string, Time, Date, WaveAudio. There are also 2D and 3D graphics primitives, and "controls”: Text, List, Button, Slide that allow the modeller to input values of different data types interactively.

The modeller can input values of variables both from the variables tree and from the controls, both synchronously (when the modelling process pauses) and asynchronously (while a modelling is running). There are menus and toolbar allowing:

· to load the model being stored as a file and open it,

· to edit LSD-specification in the process of modelling through interactive redefinitions input,

· to pause and resume running the modelling,

· to debug the model step-by-step;

While the modelling process is going on, the modeller can observe the state of a model (through both variables tree and visual representation with possible audio effects). The modelling process itself is also transparent because a state of the messages queue is visible in a special window. Post factum the modeller can reach even deeper insight into the modelling process through learning special trace files with history of the modelling process. The modeller has diverse levers for intervening in the process; such the intervening can be pre-programmed in advance and also be executed spontaneously.

The tool supports flexible and incremental modification of models with the possibilities to experiment with it and to observe its state to make comprehensive exploring the model's behaviour. This process is supposed to grow up a final model while starting from incomplete tentative one.

In this paper, a classical concurrent problem "Readers and Writers" is used as a case-study. Its detailed description accompanied by screenshots of the modelling process will be given in the final paper. Here, we enclose a complete LSD-specification of the model with comments together with a few screenshots. The first screenshot shows incorrect work of the model; it is corrected on the fly as it is shown in the second screenshot through a special window. Other two screenshots demonstrate a correct work of the model.

In the conclusion, we outline possible applications as well as future work.

Literature

1. "Empirical Modelling Project", - http://www.dcs.warwick.ac.uk/~modelling
2. Beynon, W.M., "Empirical Modelling for Educational Technology", - Proc. Cognitive Technology'97, University of Aizu, Japan, IEEE, 1997, pp. 54-68.

3. Milner, R., "Communication and Concurrency", - Prentice Hall, 1989.

4. Hoare, C.A.R., "Communicating Sequential Processes", - Prentice-Hall, Englewood Cliffs, 1985.

5. Beynon, W.M., "The LSD Notation for Communicating Systems", - Computer Science Research Report RR87, University of Warwick, Coventry, UK, 1986.

6. Beynon, W.M., Bridge, I., and Yung, Y.P., "Agent-Oriented Modelling for a Vehicle Cruise Controller", - Proc. ESDA Conf., ASME PD-Vol. 47-4, 1992, pp. 159-165.

7. Beynon, W.M., Farkas M., and Yung, Y.P., "Agent-Oriented Modelling for a Billiard Simulation", - Department of Computer Science, RR#260, University of Warwick, UK, 1993

8. Beynon, W.M., Ness, P.E., and Yung, Y.P., "Applying Agent-Oriented Design to a Sail Boat Simulation", - Proc. ESDA'94, Vol.6, 1994, pp. 1-8

9. Adzhiev, V., Beynon W.M., Cartright A.J., and Yung, Y.P., "A Computational Model for Multiagent Interaction in Concurrent Engineering", - Proc. CEEDA'94, Bournemouth Univ., UK, 1994, pp. 227-232.

10. Adzhiev, V., Beynon W.M., and Pasko A., "Interactive Geometric Modelling based on R-functions: An Agent-oriented Approach", - Proc. CSG'94: Set-Theoretic Modelling: Techniques and Applications", Information Geometers, Winchester, UK, 1994, pp. 253-272.

11. Malone, T. and Crowston, K., "The Interdisciplinary Study of Coordination", - ACM Computing Surveys, 26(1), 1994, pp. 87-119.

12. Arbab, F., Ciancarini, P., and Hankin, C., "Coordination Languages for Parallel Programming", - Parallel Computing, 24(8), 1998, pp. 989-1004.

13. Carriero, N. and Gelernter, D., "Coordination Languages and Their Significance", - Communications of the ACM, 35(2), 1992, pp. 97-107.

14. Holvoet T. and Kielmann, T., "Behaviour Specification of Parallel Active Objects", - Parallel Computing, 24(8), 1998, pp. 1107-1135.

15. Agha, G., "Actors: a Model of Concurrent Computation in Distributed Systems", - MIT Press, 1986.

16. Andrews, G., "Concurrent Programming: Principles and Practice", - the Benjamin/Cunnings Publishing Company, 1991, 638 pp.

17. Yonezawa, A., Shibayma E., Takada, T., Honda Y., "Modelling and Programming in an Object-Oriented Concurrent Language ABCL/1", - in Object-Oriented Concurrent Programming, ed. A.Yonezava and M.Tokoro, The MIT Press, 1987.

model ReadersAndWriters(Debug=no;SlowDebug=no;DirectUserInput=yes;TraceAppend=no;LoggingMode=TRANSACTIONS)

agent Timer(Auto=1;Min=1;Max=1;Prio=0.4) {

 state {

 int t(;Upd=yes;), // time

 tEnd; // time to finish the process

 };

 init {

 t := 0;

 tEnd := ? // the modeller inputs this value on the fly;

 };

 protocol {

 [|0.3|NULL,t] (t < tEnd) -> { // course of time

 t = t + 1;

 }

 };

}.

agent Controller(Auto=1;Min=1;Max=1;Prio=0.7) {

 state {

 int numbReaders(;Upd=yes; // numbers of readers and

 numbWriters(;Upd=yes;); // writers having access

 bool invRW(;Upd=yes;); // invariant tracing "good" states

 WaveAudio alarm(;Upd=yes;); // alarm about "bad" state

 };

};

 init {

 numbReaders := 0;

 numbWriters := 0;

 invRW := TRUE;

 alarm := WaveAudio();

 };

 handle {

 LIVER : Reader.LIVE,

 LIVEW: Witer.LIVE

 derivate {

 [|1.5|numbReaders,numbWriters] invRW = (numbReaders == 0 OR numbWriters == 0) AND (numbWriters <= 1);

 [||invRW] alarm := IF(invRW, WaveAudio(), WaveAudio("d:\\winnt\media\\tada.wav", 0.5, 0.5));

 };

 protocol {

 [||NULL] (TRUE) -> { // dynamic creation of instances

 Reader["Alexander", "Rykhlinski"].LIVER = TRUE;

 Writer["Valery", "Adzhiev"].LIVEW = TRUE;

 Reader["Richard", "Cartwright"].LIVER = TRUE;

 Writer["Meurig", "Beynon"].LIVEW = TRUE;

 Reader["Dominic", "Gehring"].LIVER = TRUE;

}

};

}.

agent Reader(Auto=0;Min=0;Max=9;Prio=0.5) {

 state {

 string full_name(;Upd=yes;); name of the instance

 int tRead(;Upd=yes;), // time limit to read

 tTotalReading; // total duration of reading

 bool reading(;Upd=yes); // the instance is reading or not

 };

 oracle {

 time: Timer.t,

 nr : Controller.numbReaders,

 nw : Controller.numbWriters

 };

 handle {

 nr : Controller.numbReaders

 };

 init {

 tRead := -1;

 [tTotalReading := 0;

 reading := FALSE;

 full_name := AgPrm(0) + " " + AgPrm(1);

 };

 derivate { // assigning time limit for reading

 [0.4|1.6|reading] tRead = IF(reading == TRUE, 3, -1);

 };

 protocol {

 [0.7|0.5|time] (nw_ == 0 AND reading == FALSE) -> {

 nr = nr_ + 1; // entering session of reading

 reading = TRUE;

 }

 [||time] (tRead > 0) -> { // reading session in progress

 tRead = tRead - 1;

 tTotalReading = tTotalReading + 1;

 }

 [|1.5|tRead] (tRead == 0) -> {// session of reading finished

 reading = FALSE;

 nr = nr - 1;

 }

 };

}.

agent Writer(Auto=0;Min=0;Max=9;Prio=0.5) {

 state {

 string full_name(;Upd=yes;); // name of the instance

 int tWrite(;Upd=yes;), // time limit to write

 tTotalWriting; // total duration of writing

 bool writing(;Upd=yes); // the instance is writing or not

 };

 oracle {

 time : Timer.t,

 nr : Controller.numbReaders,

 nw : Controller.numbWriters

 };

 handle {

 nw : Controller.numbWriters

 };

 init {

 tWrite := -1;

 tTotalWriting := 0;

 writing := FALSE;

 full_name := AgPrm(0) + " " + AgPrm(1);

 };

 derivate { // assigning time limit for writing

 [0.4|1.6|writing] tWrite = IF(writing == TRUE, 4, -1);

 };

 protocol {

 [0.7|0.5|time] (nr_ == 0 AND nw_ == 0 AND writing == FALSE) -> {

 nw = nw_ + 1; // entering session of writing

 writing = TRUE;

 }

 [||time] (tWrite > 0) -> { // writing session in progress

 tWrite = tWrite - 1;

 tTotalWriting = tTotalWriting + 1;

 }

 [|1.5|tWrite] (tWrite == 0) -> { //session of writing finished

 writing = FALSE;

 nw = nw - 1;

 }

 };

}.

[image: image1.png]8] LSD-engine: ReadersAndwriters [_[CIx]

Elebodeling Window Help

2| Bl SISl [

u| A

=

{End=100

&1 Cortroler{1]
PumbReaders=2
PumbWiters=1
invRW=false
alam="c\wirnttedia\tada wi

ctiviyCiaphonitof1]

eade(1]
fullname="blexander Ryk i
e
{otaReading-5
reading=iie

o Witef1]

full_name="Valey Adzhiey"

twite=2

Watalwiting=10

wiing=tue,

51 Readef2]

fullname="Richard Cattwioh

e

{otaReading-0

reading=lalse

o Witef2]

ull_name="Meurig Beyrori”

wi

otahwiting=0

wing-false

5 Readerf3]

fullname="Doriric Gehiing’

WRead=2

{otaReading=1

reading=iie

S

EXs

8, Queue(3 messages) =[00x]

Variable Value | From Pty
Rieadei'Dominic” Gehring'Fiead 1 Reade{'Dominic
Readeil"Doninic Gehring'|TotsRea.. 2 Readet'Dominic"’
Timer{1] 15 Tinefl]

= end of queue body frame *>*

LSD-engine modes

T~ Debug I~ Esitmodeling 7 Diregt user input
I™ SlowDebug 7 New agent

W Pause I Update

Model atibutes

e —

[

‘Soxander Fyhbinski Valery st

Rt cmnﬁm h/eun? Beynon

Doriic Gating

1

T&PS [NUM [SCAL

[image: image2.png][Agent dialog [z1x]
Agent Instance Patameter
[witer o e =l
STATE-variable Type. DRACLE
[| : I (] I |
il valie HANDLE
[= I |
Auibutes
DERVATE Localpioy Gobal ity Response st
[=l i g
(Redefinition
[Fine ~[Fwiing = TRUE. & 1)
PROTOCOL Locapioy Global ity Resparse it
- [o5 Tinert
Conditon
[Fortvoter rmbeaders_ == 0 AND Contlle nBirters_ = D AND wiing = FALSE >{
Aion
[T =] [Comoterrumtwiier: = [Cornolermanbines_+1 B

Aoy Applyto al

[image: image3.png]€| LSD-engine: ReadersAndWiriters
Elebodeling Window Help

[_[OIx]

& Tine1]
=19
{End=100

5 Contoler1]
rumbReader
PumbWiters=0
invAW=lue
slam=""100% 100%

ActivyCraphMonitor1]

5 Readeri]
ull_name="blexander Fykhinski’
WRead=1
HotaReadi
reading=iie

5 witer1]
full_name="Valey Aczhiey"
il
Wotawiting-8
wiling=false

£ Readerl2]
fullname="Richard Cattwight"
Weat
HotaReadi
reading=inie

& Witerl2]
ull_name="Meurig Beyrori”
Wwite=1
otahwiting=0

5 Readerf3]
fullname="Doriric Gehiing"
Weat
{otaReading-5
reading=iie

]
Variable Value

ehing’] Totafeading 6
0
6
0
6
2

Timerf1]
= end of queus body fiame

0 Timel]

T~ Debug I~ Esitmodeling 7 Diregt user input

I™ SlowDebug 7 New agent
W Pause I Update
Model atibutes

e —

& Graphics

‘Soxander Fyhbinski
i Canurighe

Doriic Gating

TCAPS [WOM [SchL

[image: image4.png]) LSD-engine: ReadersAndwiiters
Fie

Modeling Window Help

[_[CIx]

& Tine1]
ot
{End=100

5 Contoler1]

AD0%100%
ctiviyCiaphonitof1]

5 Readeri]
ull_name="blexander Fykhinski’
Weat
WataReading=27
readingelalse

5 witer1]
full_name="Valey Aczhiey"
il
Watalwiting=24
wing-false

£ Readerl2]
fullname="Richard Cattwight"
WRead=1
WataReading=27
reading=lalse

& Witerl2]
ull_name="Meurig Beyrori”
il
otalwiting=11
wing-false

5 Readerf3]
fullname="Doriric Gehiing"
Weat
WataReading=27
readingelalse

ucuel3 messages)
Variable

Value Py

Contoler1] rumbwiters
= end of queus header rame.
Wite"Meurig"Beynon'] Totahwiting
Timerf1]

= end of queus body fiame

12
o

Witef Meuig
Timer{1]

I Debug
I™ SlowDebug 7 New agent
W Pause I Update

I~ Esitmodeling 7 Diregt user input

Model atibutes

e —

& Graphics

Soxander Fykinski

R cmnﬁm

Doriic Gating

ity Aty

g ignon

TCars [WOW [SCAL

PAGE
7

