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ABSTRACT

An algorithm of polygonization of trimmed implicit
surfaces yielding surface sheets is presented. These two-
dimensional manifolds with boundaries result from the
set-theoretic difference of an implicit surface and a
solid. The algorithm generates the polygonal
approximation of the trimmed surface with the mesh
adaptation to the manifold boundary.

1. INTRODUCTION

This work was inspired by art works of M.C. Escher,
namely “Sphere Spirals” (1958) and “Bond of Union”
(1956), showing spiral shaped surface sheets cut of a
sphere and human head surfaces. These art works raise
two questions:
1) How does one define a geometric model for a surface
sheet of this type?
2) How does one visualize such geometric model?

A surface sheet can be mathematically defined as a two-
dimensional manifold with boundary (or simply a 2-
manifold). Modeling and visualization of the above
mentioned spiral type 2-manifolds using parametric
surfaces seems to be a difficult task. The alternative is to
use isosurfaces of functions of three variables (so-called
implicit surfaces). A 2-manifold can be represented as a
set-theoretic difference between some initial carrier
implicit surface and a trimming solid (see Fig.1 for
modeling Escher’s “Sphere Spirals”). In this paper we
discuss problems of defining carrier surfaces and
trimming solids, and polygonization of the trimmed
surface with the mesh adaptation to the surface-surface
intersection curves composing the manifold boundary.

2.  OTHER WORKS

If we define the initial surface A as  fA (x,y,z) = 0 and the
trimming solid B as fB (x,y,z) ≥ 0, the trimmed surface T
= A \ B can be defined as fT (x,y,z) = 0 with

fT = -fA

2 & (-fB) ,
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Figure 1. “Sphere Spirals”: 2-manifold with boundary
definition as a set-theoretic difference between an initial
surface A and a trimming solid B.

where symbol &  denotes min(f1, f2) or some other
function corresponding to the set-theoretic intersection.
The idea here is to represent the surface as a solid with -
fA

2 ≥ 0 and further to apply set-theoretic operations to it.
This was proposed by Rvachev [4]. A similar approach
is used in the modern  solid modeller Svlis [3]. The
serious disadvantage of this approach is that it is not
possible to distinguish two sides of the initial surface
represented as  -fA

2 ≥ 0. Therefore, it is not possible to
apply conventional polygonization algorithms based on
inside-outside point classification [2].

Bloomenthal and Ferguson [1] proposed a general
polygonization algorithm for non-manifold surfaces. The
algorithm can polygonize both 2-manifolds with



boundaries and non-manifold surfaces. Because of the
algorithm complexity, it is difficult to implement its
adaptive version. A more simple algorithm processing
only 2-manifolds with boundaries can be obtained by
extending conventional polygonization algorithms.

The problem we deal with in this paper is related to the
intersection of two implicit surfaces. There are two main
numerical approaches to implicit surface-surface
intersection :

• Start with some intersection point found analytically or
numerically. Trace the intersection curve using some
optimization method (for example, a gradient search).

• Approximate both surfaces by polygons and intersect
two obtained polyhedrons.

To polygonize a boundary of a CSG solid, Wyvill and
van Overveld [7] apply the uniform subdivision
algorithm to the resulting surface and then enhance the
mesh with an iterative numerical procedure.

Note that the above mentioned methods treat both
surfaces equally. On the other hand, one could observe
in Fig. 1 that for a simple initial surface the function
defining a trimming solid can be very complex. It means
that evaluation times for these two functions can differ
drastically. Therefore, an algorithm aiming to decrease
the number of evaluations of the more complex function
can substantially decrease the overall computation time.

                                                             

                                                  a) One or two vertices inside the trimming solid

          

                       b) Center inside the trimming solid                                         c) Intersection is not detected

                     

                d) Triangle inside and near the trimming surface          e) Triangle outside and near the trimming surface

Figure 2. Adaptation criteria for a polygon of the initial surface mesh.
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Figure 3. Adaptive trimming of a sphere (top part) by a complex solid:
               (a) result of non-adaptive trimming with polygonization on a sparse grid;
               (b) mesh obtained by the adaptive polygonization;
               (c) result of adaptive trimming.  

3.  TRIMMING ALGORITHM

We propose an algorithm for implicit surface trimming
based on the extension of existing implicit surface
polygonization algorithms. The idea is to adaptively
polygonize the initial surface near its intersection curves
with the trimming solid surface and to test the obtained
polygons against the trimming solid. The proposed
algorithm is based on the implicit surface
polygonization method proposed in [5]. In fact, any
conventional polygonization algorithm can be extended
in this way.

The algorithm includes the following steps:

1. Define the initial surface as  fA (x,y,z) = 0  and the
trimming solid as fB (x,y,z) ≥  0.

2. Introduce a sparse spatial grid in (x,y,z) space.

3. Calculate fA (x,y,z)  values at the grid points.

4. Obtain the initial triangulation for the surface fA  = 0
following a conventional polygonization  algorithm
providing correct topology with the given sparse grid.

5. For each triangle, calculate fB (x,y,z) values in its
vertices and check the following adaptation criteria (see
Fig. 2):

 • Different signs of the function fB values in the
vertices: the triangle intersects the trimming surface
(Fig. 2a);

 • Evaluate fB in the barycenter of the triangle. If the sign
is different from the signs in the vertices, the trimming
surface penetrates the triangle but all vertices are outside
or inside the surface (Fig. 2b). Fig. 2c shows the worst
case when the trimming surface intersects the triangle
but the sign in the barycenter is the same as signs in the
vertices.

 • If the absolute value of fB in a vertex is less than some
given ε, the triangle is close to the trimming surface
with the possible surface-surface intersection (Fig. 2d,e).

6.  If one of the adaptation criteria is satisfied, start
recursive subdivision of the triangle in four triangles by
introducing new vertices in the middle of its edges.
Place newly introduced vertices on the initial surface
using a search in the normal direction. If a triangle
adjacent to an edge is not subdivided, an additional
triangle has to be inserted to prevent cracks. Repeat the
previous step for the four new triangles.

7. If no one of the adaptation criteria is satisfied for the
current triangle or the given level of subdivision is
achieved, classify the triangle against the trimming
solid. Check the values of the function fB in the vertices.
Three cases are possible:

  1) Three positive values. The triangle is completely
inside the trimming solid and is not included in the
resulting mesh.

  2) Three negative values. The triangle is completely
outside the trimming solid and is included in the
resulting mesh.

  3) Different signs. The endpoints of the intersection
line segment can be found by the linear interpolation
along the corresponding edges. The triangle is split
along this segment and the part lying outside the
trimming solid is included in the resulting mesh.

Note that the proposed algorithm starts with the sparse
mesh and then invokes its adaptation in the
neighborhood of the intersection curves. Moreover, the
function fB is evaluated only in the vertices of the initial
surface mesh but not in all 3D grid points. This helps to
decrease the number of time-consuming function
evaluations while providing required accuracy of the 2-
manifold boundary extraction.
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Figure 4. “Blobby Spiral”: an adaptive polygonal mesh
(a) and a blobby object surface (b)  trimmed by a solid.

4.  EXPERIMENTS

The trimmed sphere shown in Fig. 1 was polygonized
with the proposed algorithm. The trimming solid was
modeled using sweeping, offsetting and union operations
[6] (see Fig.5). Its top and bottom critical points are
placed exactly on the initial sphere with the trimming
surface tangent to the sphere in the critical points. This
is necessary to check the proposed adaptive
polygonization criteria. Fig. 3 illustrates the difference
between non-adaptive and adaptive polygonization near
the top critical point on the sparse grid with 13×13×9
nodes and four recursion levels of adaptation. The
proposed polygonization algorithm can be applied to any
initial surface and a trimming solid defined by
continuous real functions. Fig. 4 shows an adaptive
polygonal mesh and a trimmed surface of a  blobby
object. Its adaptive polygonization on the 20×20×20
initial grid took 40 seconds on a SG Indigo2 workstation.
Its non-adaptive polygonization on the corresponding
128×128×128 grid takes about 25 minutes.

     z2 = z*z;
     R = sqrt(100.-z2);
     x0 = R*cos(0.5*z+phi);
     y0 = R*sin(0.5*z+phi);
     xt = x-x0;
     yt = y-y0;
     r = 2.- z2*0.02;
     ftrim = r*r - xt*xt -yt*yt;
     offset = 10 - z2*0.1;
     ftrim = ftrim+offset;

Figure 5. Function ftrim(x, y, z) defining a component of
the trimming solid for the “Sphere Spirals” (Fig. 1);
x, y, z ∈ [-10, 10], and phi defines a phase of the spiral.

5.  CONCLUSION

A new algorithm of polygonization of two-dimensional
manifolds with boundaries is proposed. The algorithm
extends conventional polygonization algorithms by
including a trimming solid and adapting the polygonal
mesh to the 2-manifold boundary. The proposed
adaptive solution significantly accelerates
polygonization. Depending on the initial surface and the
trimming solid complexity, we obtained 20 to 70 times
speed-up if compared with the non-adaptive algorithm.
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